ChE 304 Exam 3. Put your name on the back of the exam. Do your own work.

Similar documents
ChE 304 Final Exam. ü Mark your answers Put your name on the back

ishares Core Composite Bond ETF

Warm Up: Identify the population and the sample: 1. A survey of 1353 American households found that 18% of the households own a computer.

A Calculus for End-to-end Statistical Service Guarantees

Chapter Five: Forces. Ø 5.1 Forces. Ø 5.2 Friction. Ø 5.3 Forces and Equilibrium

Computational Inelasticity FHLN05. Assignment A non-linear elasto-plastic problem

B-Series Section Overview. Ball Screw Cutaway. UNI-LIFT Ball Screw Actuators provide high. 34

Optimizing Rod Lift in High Water Cut Resource Plays: A Divide County North Dakota Three Forks Case Study

Wire rope and chain scraper

Data sheet: Wilo-CronoNorm-NL 80/200-3/4

Standard pumps. Dimensions, weights Wilo-CronoLine-IL

Numerical Solution of Plane Irrotational Flow

Uncertainty in Measurements

1. The augmented matrix for this system is " " " # (remember, I can't draw the V Ç V ß #V V Ä V ß $V V Ä V

An Agenda Based Framework for Multi-Issue Negotiation

Abstract Submitted for the DFD11 Meeting of The American Physical Society

solutions:, and it cannot be the case that a supersolution is always greater than or equal to a subsolution.

Hoboken Public Schools. AP Calculus Curriculum

Y = 2.1 µ 10^ µ k = * 0. rho = l = 1. h = w = Area = h * w Izz = 1 ê 12 * w * h^3

The Northern Immigration Policy in a North-South Economy Model

Randomized Pursuit-Evasion in Graphs

Novax. Axial flow fans Standard and hot smoke

M-Series, Actuator Overview. Machine Screw Cutaway. UNI-LIFT Machine Screw Actuators offer precise. 12

Decomposition and Complexity of Hereditary History Preserving Bisimulation on BPP

A constraint based dependancy parser for Sanskrit

Flue gas discharge material Dimensions configurations BFC 28 / 30 / 50 / 60

NM, NMS. Close Coupled Centrifugal Pumps with flanged connections. Construction. Applications. Operating conditions. Motor

ÈÖÓÚ Ò Ò ÁÑÔÐ Ø ÓÒ È É Ï Ö Ø ÐÓÓ Ø Û Ý ØÓ ÔÖÓÚ Ø Ø Ñ ÒØ Ó Ø ÓÖÑ Á È Ø Ò É ÓÖ È É Ì ÓÐÐÓÛ Ò ÔÖÓÓ ØÝÔ Ò Ð Ó Ù ØÓ ÔÖÓÚ Ø Ø Ñ ÒØ Ó Ø ÓÖÑ Ü È Üµ É Üµµ Ý ÔÔ

Novenco Axial Flow Fans. Novax St andard and hot Smoke

Sensyflow P. Thermal air-mass flowmeter for test rigs and quality assurance 10/ EN. Function and System Design

λ = λ = 1.0 w Ø w = C (w) + λ N wì w


σ IηIη Andrew Askew Florida State University

Communications Network Design: lecture 07 p.1/44

Hoboken Public Schools. Project Lead The Way Curriculum Grade 8

ÐÓ Û µ ÅÄ Ó Ò ººº Ð Ò Ö Ó Ü = (,..., Ü Ò ) ººº ÒØ Ó ÛÓÖ Ý = (Ý ½,..., Ý Ò ) ººº Ö Ú ÛÓÖ ¹ ÓÒ Ø ÒØ ÐÓ Û µ Å Ü ÑÙÑ Ä Ð ÓÓ Åĵ Ó Ö Ø Ø ÔÓ Ð Ó Ö Ñ Ò Ñ Þ Ø

Liveness: The Readers / Writers Problem

BUSI 2503 Section A BASIC FINANCIAL MANAGEMENT Summer, 2013(May & June)

GEAR PUMPS. Displacement from 10 to 100 ccm Pressure up to 290 bar Speed from 350 to 3200 RPM

Chapter. Estimating the Value of a Parameter Using Confidence Intervals Pearson Prentice Hall. All rights reserved

Quantum theory of scattering by a potential. Lecture notes 8 (based on CT, Sec4on 8)

Capacity Assessment Models: Engineering and Operational Uses

Improved Boosting Algorithms Using Confidence-rated Predictions

The Nominal Datatype Package in Isabelle/HOL

Catalog HY /US SERIES DESCRIPTION BODY NO. PAGE NO.

Event Based Sequential Program Development: Application to Constructing a Pointer Program

Tensor. Field. Vector 2D Length. SI BG cgs. Tensor. Units. Template. DOFs u v. Distribution Functions. Domain

SMART MOTION C A T A L O G 2009:1

Solitons in the Korteweg-de Vries Equation (KdV Equation)

Hoboken Public Schools. Algebra I Curriculum

V R V S. v M = 1 T. v(t) = ˆvsin(ωt) V eff = 1 2

ËÓÙÖ Ö Ø Ò Ö³ Ó Ø ÓÒ Ò ÐÓÓÑ Ö


Randomized Pursuit-Evasion in Graphs

Solutions of Implication Constraints yield Type Inference for More General Algebraic Data Types

Ò ÐÝ º Ê Ö ÓÒ ØÖ ÙØ ÓÒ Ó ÇÆ ½µ Ì ÓÙØÓÑ Ù Ð µ Ú Ö Ð Ö ÔÓÒ Ö ÔÓÒ µ Ú Ö Ð Ô Ò ÒØ Ò µ Ú Ö Ð Ú Ö Ð Y Ö Ð Ø ØÓ ÇÆ ÇÊ ÅÇÊ ÜÔÐ Ò ØÓÖÝ ÓÖ Ð Ö Ò µ Ú Ö Ð Ò Ô Ò Ò

from 500 to 5000 RPM GEAR PUMPS P23

DEPARTMENT OF TRANSPORTATION. National Highway Traffic Safety Administration. 49 CFR Part 571. Docket No. NHTSA RIN 2127-AK17

SLANT BED CNC TURNING CENTER

Solitons in the Korteweg-de Vries Equation (KdV Equation)

Stainless Steel Gas Springs

ÔÖ Î µ ÛÖ Î Ø Ø Ó ÚÖØ ÖÔ Ø Ø Ó º ØØ Û Ö ÚÒ Ø Ò Ú ¼ ½ Ú ½ ¾ Ú ¾ Ú Ú ½ ÒÒ ÙÒØÓÒ Eº ÏÐ Ò Ø ÖÔ ÕÙÒ Ú ÛÖ Ú ¼ Ú ¾ Î ½ ¾ Ò E µ Ú ½ Ú º Ì ÛÐ ÐÓ Ø Ö Ø Ò Ð Ø ÚÖ

Ë ÁÌÇ ÌÓ Ó ÍÒ Ú Ö Øݵ Ç ¼ Ô Û Ö ÙÒÓ Ø Ò Ð Ä Ò ÙÖ ÖÝ ÓÒ ÒÓØ Ý ÛÓÖ Û Ø Ã ÞÙ ÖÓ Á Ö Ó ÒØ Ë Ò ÝÓ ÍÒ Ú Ö Øݵ Ç

A. Administrative. B. Technical -- General ISO/IEC JTC1/SC2/WG2 N1933

DAS Series Submersible Waste Water and Sewage Pumps

Ejector, Series EBS push-in fitting pneumatic control, T-design with silencer

ÁÐÐÙ ØÖ Ø ÓÒÚ Ö Ò Ó ÙÒ ÖØ ÒØÝ Ø Ñ Ø Ý ØÛÓ Ü ÑÔÐ ½º ÐÙÓÒ ØÖ ÙØ ÓÒ Ø Q.½ Î ¾º ÒÐÙ Ú Ø Ö Ø Ó dσ dp T ½. Ì Îµ/ dp dσ T ½. ¼ Ì Îµ Ì ØÛÓ Ü ÑÔÐ Ö ÐÓ ÐÝ ÓÒÒ Ø

ROUNDO Section Bending Machines Type R-1 through R-21-S

function GENERAL-SEARCH( problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do if

Ã Ô ÐÐ Ø ÙÒ Ð ÕÙ Ô Ò ÙÖ ÓÑ Ú ÒØ Ö Ø ÓÒ Ò ÓÑÔ Ø Ø ÓÒ Ä ÙÖ Å ËËÁÇ ÄÈÌÅ ÍÒ Ú Ö Ø È Ö ÎÁ ¾½ ÒÓÚ Ñ Ö ¾¼½

Clarification of apolitical codes in the party identification summary variable on ANES datasets

Chapter 1: Number Concepts

Ge108: Homework 3 Solution

ORDINANCE NO. 28 Series 2018

The Impact of Immigration: Why Do Studies Reach Such Different Results?

ν = fraction of red marbles

ˆ Ø Ø Ø ØŒ Ø Ø Ø Ø Â Ø Ø. Ø ØŒØ Â ØªØ Ø . Ø Ø Ø Ø Ø Ø Ø Ø Š . Ø Ø

DYNAMIC RISK MANAGEMENT IN ELECTRICITY PORTFOLIO OPTIMIZATION VIA POLYHEDRAL RISK FUNCTIONALS

Ì ÄÈ Ë ÈÖÓ Ð Ñ Ì ÄÈ Ë ÐÓÒ Ø Ô Ö Ñ Ø Ö Þ ÓÑÑÓÒ Ù ÕÙ Ò µ ÔÖÓ Ð Ñ Ò Ö Ð Þ Ø ÓÒ Ó Û ÐÐ ÒÓÛÒ Ä Ë ÔÖÓ Ð Ñ ÓÒØ Ò Ò Ô¹ÓÒ ØÖ ÒØ º Ò Ø ÓÒ ÁÒ ÄÈ Ë(,, Ã ½, Ã ¾, )

CITY OF DOUGLAS Contract Documents & Specifications for a New Specified Reel Grinder Douglas Community Club (Golf Course)


A B. Ø ÓÒ Left Right Suck NoOp

China National Expressway Optical Fiber Communication Network: Planning, Construction and Operation

Lab 11: Pair Programming. Review: Pair Programming Roles

THE ASSAM GAZETTE ±Ò±1Ì

Ø Ñ Ò Ò ÙØÙÑÒ ¾¼¼¾ Ò Ò Ö ÕÙ ÒØ ÐÓ µ Ø Û Ø ØÖ ØÖÙØÙÖ ½ ȹØÖ È¹ ÖÓÛØ ÄÇË Ì È¹ØÖ Ø ØÖÙØÙÖ È¹ ÖÓÛØ Ð ÓÖ Ø Ñ ÓÖ Ò Ò ÐÐ Ö ÕÙ ÒØ Ø ÄÇË Ì Ð ÓÖ Ø Ñ ÓÖ Ò Ò Ö ÕÙ

IV. Labour Market Institutions and Wage Inequality

NEW YORK STATE COURTS ELECTRONIC FILING SUPREME COURT

Deadlock. deadlock analysis - primitive processes, parallel composition, avoidance

Essential Questions Content Skills Assessments Standards/PIs. Identify prime and composite numbers, GCF, and prime factorization.

ØÖ Ø Ì ÈÐ ÒØ Ò ÙÒ Ð ÌÖ Ó Ä È ÌÇĵ ÔÖÓ Ø Ñ ØÓ Ò Ö Ø ÑÙÐØ Ò Ô ÝÐÓ Ò Ö ÔÖ ÒØ Ò ÐÐ Ò Ö Ó Ø ÔÐ ÒØ Ò ÙÒ Ð Ò ÓÑ º ÓÖ ÔÐ ÒØ Ø Ó ÐÓ Ø Ø ½µ ÓÙÖ Ò Û Ö Ò Ó ÔÐ ÒØ

Verification. Lecture 3. Bernd Finkbeiner

ÇÙØÐ Ò Ó Ø Ø Ð ÅÓØ Ú Ø ÓÒ = ¾ ÙÔ Ö ÝÑÑ ØÖ Ò ¹Å ÐÐ ÕÙ ÒØÙÑ Ñ Ò ÆÙÑ Ö Ð Ð ÓÖ Ø Ñ Ò ÒÙÑ Ö Ð Ö ÙÐØ Ü Ø ÓÐÙØ ÓÒ ÙÖØ Ö Ô Ö Ô Ø Ú

Case Bb (elastic, 1D vertical gradient)

Ë ÑÙÐ Ø ÓÒ ÙÖ ØÝ Ò Ø ÔÔÐ Ô ÐÙÐÙ ËØ Ô Ò Ð ÙÒ ËØ Ú ÃÖ Ñ Ö ÇÐ Ú Ö È Ö Ö ÓÖÑ ÖÝÔØ ½»¼»¾¼¼

Mobile Money and Monetary Policy

ÙÖ Ë½ Ø Ò ØÖ ÙØ ÓÒ Ò Ø ÓÒØ Ø ÓÖ Ø Ò Ø Ö Ù º ¾

Canutillo Independent School District Raising Scientists: Science Fair Projects

Ritmo meets all your welding needs in your jobsite

Global Income Inequality by the Numbers: In History and Now An Overview. Branko Milanovic

Transcription:

ChE 304 Exam 3 Put your name on the back of the exam. Do your own work. 1. Water i pumped through a 4-inch in diameter pipe (ee the figure (a) below). The pump characteritic (pump head veru flow rate) are given in part (b) of the figure. Determine the flow rate if the head lo in the pipe i given by h L = 8 v g. Note: Q = V. In addition, you have to determine the unit on the 16 and the 5 in the equation h p = 16-5 V.

Exam 3v8_1.nb Set up the BE eq = p 1 g + z 1 + v 1 g + h p ã p g + z + v g + h L; Subtitute known value eq1 = eq êê. :z 1 Ø 0, z Ø 1 ft, p 1 Ø 0, p Ø 0, v 1 Ø 0, v Ø v, h p Ø 16 ft - 5 ft v, v Ø v A, h L Ø 8 v 16 ft - 0.43633 v ã 1 ft + 0.13975 v Solve for velocity v = 4.01198 ft ft g, A Ø p ê 4. H1 ê 3 ftl, g Ø 3. ft ë > Convert to volumetric flow rate v p ê 4 H1 ê 3 ftl 0.35011 ft 3 v = 0.00991089 m 3

Exam 3v8_1.nb 3. Gaoline (g = 0.68) flow through a pump at 0.1 m 3 ë a indicated in the figure. The lo between ection (1) and () i given by h L = 0.3 v. What will the difference in preure between ection (1) and g () be if 0 kw i delivered by the pump to the fluid? Ueful function a@d_d := p ê 4. d ; BE h p + p 1 g + v 1 g + z 1 ã h L + p g + v g + z Solve for p - p 1 g v 1 g - v g - h L + h p + z 1 - z Put the power into a form that can be ubtituted into the BE P = v h p g h p =.99814 m4 vdot

4 Exam 3v8_1.nb Fill in the value to be ubtituted into eq v = v 1 ub = : vdot Ø 0.1 m3 v Ø 0.1 m3, v 1 Ø 0.1 m3 ì a@d 1D, ì a@d D, d 1 Ø 0.1 m, d Ø 0. m, h p Ø hp, v Ø v 1, A Ø a@d 1 D, g Ø 9.81 m ë, z Ø 3 m, z 1 Ø 0, h L Ø 0.3 v g >; Subtitute 9.5697 m g Subtitute for g 197 53. Nt m Fill in the value to be ubtituted into eq v = v eq1 = eqa êê. :vdot Ø 0.1 m3, v 1 Ø 0.1 m3 ì a@d 1D, v Ø 0.1 m3 ì a@d D, d 1 Ø 0.1 m, d Ø 0. m, h p Ø hp, v Ø v, A Ø a@d 1 D, g Ø 9.81 m ë, h L Ø 0.3 v g, z 1 Ø 0, z Ø 3 m> 3.916 m g 19 576. Nt m Fill in the value to be ubtituted into eq v = (v 1 + v L ê eq1 = eqa êê. :vdot Ø 0.1 m3, v 1 Ø 0.1 m3 ì a@d 1D, v Ø 0.1 m3 ì a@d D, d 1 Ø 0.1 m, d Ø 0. m, h p Ø hp, v Ø Hv 1 + v L ê, A Ø a@d 1 D, g Ø 9.81 m ë, h L Ø 0.3 v g, z 1 Ø 0, z Ø 3 m> 31.7448 m g

Exam 3v8_1.nb 5 11 763. Nt m Fill in the value to be ubtituted into eq h L = 0.3 v 1 + 0.3 v g g for the h p term eq1 = eqa êê. :vdot Ø 0.1 m3 v Ø 0.1 m3, v 1 Ø 0.1 m3 ì a@d 1D, ì a@d D, d 1 Ø 0.1 m, d Ø 0. m, h p Ø hp, A Ø a@d 1 D, g Ø 9.81 m ë, h L Ø 0.3 v 1 g + 0.3 v 9.3466 m g g, z 1 Ø 0, z Ø 3 m> 195 765. Nt m eq1 = eqa êê. :vdot Ø 0.1 m3 v Ø 0.1 m3, v 1 Ø 0.1 m3 ì a@d 1D, ì a@d D, d 1 Ø 0.1 m, d Ø 0. m, h p Ø hp, A Ø a@d 1 D, g Ø 9.81 m ë, h L Ø 0.5 µ 0.3 v 1 g + 0.5 µ 0.3 v 31.48 m g g, z 1 Ø 0, z Ø 3 m> 08 415. Nt m

6 Exam 3v8_1.nb h L = 0.3 v 1 g h L = 0.3 v g 197 53. Nt m 19 576. Nt m h L = 0.3 I v 1+v g L 11 763. Nt m h L = 0.3 v 1 g +0.3 v g 195 765. Nt m h L = 0.5 0.3 v 1 g +0.5 0.3 v g 08 415. Nt m v 1 = 15.789 m v = 3.8197 m h p = 4.9845 m

Exam 3v8_1.nb 7 3. Air dicharge from a - inch in diameter nozzle and trike a curved vane, which i in a vertical plane (hown below). A tagnation tube connected to a water U-tube manometer i located in the free air jet. Determine the horizontal component of the force that the air jet exert on the vane. Neglect the weight of the air and all friction. Ue the BE to find the air velocity eq = p 1 g + z 1 + v 1 g ã p g + z + v g ; Ueful function a@d_d := p 4. d ; Eliminate variable v 1 g ã p g Solve for v 1 the air velocity v 1 = g p g Subtitute for p = hg w g h gw g

8 Exam 3v8_1.nb Subtitute known value and evaluate to yield the air velocity v 1 = 176.8 ft Write the equation for the force in the x - direction F x ã - v1 v1x r A 1 g c + v vx r A g c Subtitute F x ã -.96371 lb f The force of the fluid on the vane i the (-) of the reaction force Force of the air on the vane =.96371 lb f Evaluate the piece - v1 v1x r A 1 g c êê. :v1 Ø eq4, v1x Ø eq4, g c Ø 3. lb m ft lb f, A 1 Ø a@ ê 1 ftd, v Ø eq4, vx Ø v Co@10 DegreeD, A Ø a@ ê 1 ftd, r Ø 0.075 lb m ë ft 3 > -1.5885 lb f v vx r A g c êê. :v1 Ø eq4, v1x Ø eq4, g c Ø 3. lb m ft lb f, A 1 Ø a@ ê 1 ftd, v Ø eq4, vx Ø v Co@10 DegreeD, A Ø a@ ê 1 ftd, r Ø 0.075 lb m ë ft 3 > -1.37546 lb f

Exam 3v8_1.nb 9 4. For the piping ytem hown, all pipe are concrete with a roughne of 0.04 inche. Neglecting minor loe, compute the overall preure drop Hp 1 - p L in lb f ë in if V = 0 ft 3 ë. The fluid i water at 0 C. A Label the firt node a A and the path a u upper, m middle, l lower eq = p 1 g + z 1 + v 1 g ã p A g + z A + v A g + h L; Ueful function a@d_d := p ê 4 d ; vel@fr_, d_d := fr ê a@dd; re@v_, d_, nu_d := v d ê nu; ff@re_, eod_d := 1.6363883057031 LogA0.34043317053636 eod 1.11 + 6.9 re E Set up the contant for ubtitution ub1 = 8z 1 Ø 0, z A Ø 0<; ub = 8v 1 Ø 0, v A Ø 0<; ub3 = 9g Ø 3. ft ë, g Ø 6.4 lb f ë ft 3, n Ø 1.05 µ 10-5 ft ë =; ub4 = :h L Ø fr L d v g >; ub5 = 8d u Ø 8 ê 1 ft, d m Ø 1 ê 1 ft, d l Ø 15 ê 1 ft, L u Ø 1500 ft, L m Ø 800 ft, L l Ø 100 ft<; Find the Dp between 1 and A p 1 g ã h L + p A g Rearrange equation and define p 1 - p A = Dp Dp ã g h L

10 Exam 3v8_1.nb Subtitute for h L = Jf L d Dp ã fr L v g d g Evaluate Dp ã 17 001.3 lb f ft Convert to pi v g N p 1 -p A = 118.1 lb f in Now we have the preure drop from point 1 to point A. Next we find the preure drop from point A to point. Write the equation for each branch hlu = fr u L u v u g d u hlm = fr m L m v m g d m hll = fr l L l v l g d l Expre the fourth equation in term of v A 1 v ã 4 p d l v l + 1 4 p d m v m + 1 4 p d u v u Set up the contant for ubtitution. Strip the unit and ue FindRoot ub1 = 8z 1 Ø 0, z A Ø 0<; ub = 8v 1 Ø 0, v A Ø 0<; ub3 = 9g Ø 3., g Ø 6.4, n Ø 1.05 µ 10-5 =; ub4 = :h L Ø fr L d v g >; ub5 = 8d u Ø 8 ê 1, d m Ø 1 ê 1, d l Ø 15 ê 1, L u Ø 1500, L m Ø 800, L l Ø 100<;

Exam 3v8_1.nb 11 Now we have 4 equation in three unknown, v u, v m, and v l. Subtituting value and olving any three of them imultaneouly hould produce value for the unknown. eq6 = hlu - hlm ã 0 êê. Join@ub3, ub5, 8fr u Ø ff@re@v u, d u, nd, H0.04 ê 1L ê d u D, fr m Ø ff@re@v m, d m, nd, H0.04 ê 1L ê d m D<D eq7 = hlm - hll ã 0 êê. Join@ub3, ub5, 8fr l Ø ff@re@v l, d l, nd, H0.04 ê 1L ê d l D, fr m Ø ff@re@v m, d m, nd, H0.04 ê 1L ê d m D<D eq8 = eq5 êê. ub5 - - 0.378 v m LogA0.000416573+ 0.00007588 v m E + 4.3934 v l + LogB0.00035178+ 0.0000580704 F v l 5 p v l v ã + p v m 64 4 + p v u 9 57.17 v u LogA0.00065336+ 0.00010888 v u E ã 0 0.378 v m LogA0.000416573+ 0.00007588 v m E ã 0 FindRoot find a numeric olution to the three equation in three unknown 85.4817, 9.35937, 8.81466< The equation for p A - p i Dp ã fr L v g d g Retore unit before ubtituting ub1 = 8z 1 Ø 0, z A Ø 0<; ub = 8v 1 Ø 0, v A Ø 0<; ub3 = 9g Ø 3. ft ë, g Ø 6.4 lb f ë ft 3, n Ø 1.05 µ 10-5 ft ë =; ub4 = :h L Ø fr L d v g >; ub5 = 8d u Ø 8 ê 1 ft, d m Ø 1 ê 1 ft, d l Ø 15 ê 1 ft, L u Ø 1500 ft, L m Ø 800 ft, L l Ø 100 ft<; Evaluate Dp ã 184.83 lb f ft

1 Exam 3v8_1.nb Convert to pi Dp = 1.7974 lb f in Find the total preure drop Total Dp = Hp 1 -p A L+Hp A -p L= p 1 -p = 131. lb f in v t = 5.4817 v m = 9.35937 v b = 8.81466 Dp 1 = 118.065 lb f Dp in = 1.7974 lb f in