VOTING SYSTEMS AND ARROW S THEOREM

Similar documents
Arrow s Impossibility Theorem

1.6 Arrow s Impossibility Theorem

Chapter 9: Social Choice: The Impossible Dream Lesson Plan

Arrow s Impossibility Theorem on Social Choice Systems

Recall: Properties of ranking rules. Recall: Properties of ranking rules. Kenneth Arrow. Recall: Properties of ranking rules. Strategically vulnerable

Main idea: Voting systems matter.

The Mathematics of Voting

Fairness Criteria. Review: Election Methods

MATH4999 Capstone Projects in Mathematics and Economics Topic 3 Voting methods and social choice theory

The Mathematics of Voting. The Mathematics of Voting

Voting Criteria: Majority Criterion Condorcet Criterion Monotonicity Criterion Independence of Irrelevant Alternatives Criterion

Desirable properties of social choice procedures. We now outline a number of properties that are desirable for these social choice procedures:

The search for a perfect voting system. MATH 105: Contemporary Mathematics. University of Louisville. October 31, 2017

Mathematics and Social Choice Theory. Topic 4 Voting methods with more than 2 alternatives. 4.1 Social choice procedures

Voting Criteria April

Economics 470 Some Notes on Simple Alternatives to Majority Rule

Mathematical Thinking. Chapter 9 Voting Systems

Fairness Criteria. Majority Criterion: If a candidate receives a majority of the first place votes, that candidate should win the election.

Section Voting Methods. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Voting rules: (Dixit and Skeath, ch 14) Recall parkland provision decision:

Section Voting Methods. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

answers to some of the sample exercises : Public Choice

Measuring Fairness. Paul Koester () MA 111, Voting Theory September 7, / 25

How should we count the votes?

Elections with Only 2 Alternatives

Voting Definitions and Theorems Spring Dr. Martin Montgomery Office: POT 761

Voting: Issues, Problems, and Systems. Voting I 1/36

In deciding upon a winner, there is always one main goal: to reflect the preferences of the people in the most fair way possible.

Many Social Choice Rules

Math116Chap1VotingPart2.notebook January 12, Part II. Other Methods of Voting and Other "Fairness Criteria"

MATH 1340 Mathematics & Politics

Math Circle Voting Methods Practice. March 31, 2013

(67686) Mathematical Foundations of AI June 18, Lecture 6

Social welfare functions

Social Choice: The Impossible Dream. Check off these skills when you feel that you have mastered them.

Exercises For DATA AND DECISIONS. Part I Voting

Chapter 9: Social Choice: The Impossible Dream Lesson Plan

Social Choice & Mechanism Design

Introduction to the Theory of Voting

Head-to-Head Winner. To decide if a Head-to-Head winner exists: Every candidate is matched on a one-on-one basis with every other candidate.

Chapter 1 Practice Test Questions

Rock the Vote or Vote The Rock

Voting: Issues, Problems, and Systems, Continued. Voting II 1/27

12.2 Defects in Voting Methods

SOCIAL CHOICES (Voting Methods) THE PROBLEM. Social Choice and Voting. Terminologies

Voting: Issues, Problems, and Systems, Continued

Voting Methods

Chapter 9: Social Choice: The Impossible Dream

Make the Math Club Great Again! The Mathematics of Democratic Voting

The Manipulability of Voting Systems. Check off these skills when you feel that you have mastered them.

Computational Social Choice: Spring 2007

The mathematics of voting, power, and sharing Part 1

Chapter 10. The Manipulability of Voting Systems. For All Practical Purposes: Effective Teaching. Chapter Briefing

Math for Liberal Studies

Math for Liberal Studies

Today s plan: Section : Plurality with Elimination Method and a second Fairness Criterion: The Monotocity Criterion.

Voting: Issues, Problems, and Systems. Voting I 1/31

Introduction: The Mathematics of Voting

Mathematics of Voting Systems. Tanya Leise Mathematics & Statistics Amherst College

Topics on the Border of Economics and Computation December 18, Lecture 8

In deciding upon a winner, there is always one main goal: to reflect the preferences of the people in the most fair way possible.

Lecture 11. Voting. Outline

VOTING TO ELECT A SINGLE CANDIDATE

Voting: Issues, Problems, and Systems

Voting Methods for Municipal Elections: Propaganda, Field Experiments and what USA voters want from an Election Algorithm

The Impossibilities of Voting

Social Choice Theory. Denis Bouyssou CNRS LAMSADE

Notes for Session 7 Basic Voting Theory and Arrow s Theorem

Font Size: A A. Eric Maskin and Amartya Sen JANUARY 19, 2017 ISSUE. 1 of 7 2/21/ :01 AM

Voting Protocols. Introduction. Social choice: preference aggregation Our settings. Voting protocols are examples of social choice mechanisms

Simple methods for single winner elections

Explaining the Impossible: Kenneth Arrow s Nobel Prize Winning Theorem on Elections

Rationality & Social Choice. Dougherty, POLS 8000

Voting Systems. High School Circle I. June 4, 2017

Lecture 16: Voting systems

Approaches to Voting Systems

Sect 13.2 Flaws of Voting Methods

The Math of Rational Choice - Math 100 Spring 2015

Math for Liberal Arts MAT 110: Chapter 12 Notes

that changes needed to be made when electing their Presidential nominee. Iowa, at the time had a

The Arrow Impossibility Theorem: Where Do We Go From Here?

The Mathematics of Elections

Social Choice. CSC304 Lecture 21 November 28, Allan Borodin Adapted from Craig Boutilier s slides

CS 886: Multiagent Systems. Fall 2016 Kate Larson

Mathematics and Democracy: Designing Better Voting and Fair-Division Procedures*

French. Chinese. Mexican. Italian

Safe Votes, Sincere Votes, and Strategizing

Public Choice. Slide 1

Arrow s Conditions and Approval Voting. Which group-ranking method is best?

Warm Up Day 2 Determine the Plurality, Borda, Runoff, and Sequential Runoff winners.

Constructing voting paradoxes with logic and symmetry

Voting System: elections

Possible voting reforms in the United States

Constructing voting paradoxes with logic and symmetry Teacher s Notes

Introduction to Theory of Voting. Chapter 2 of Computational Social Choice by William Zwicker

Strategy and Effectiveness: An Analysis of Preferential Ballot Voting Methods

PROBLEM SET #2: VOTING RULES

Josh Engwer (TTU) Voting Methods 15 July / 49

9.3 Other Voting Systems for Three or More Candidates

Theorising the Democratic State. Elizabeth Frazer: Lecture 4. Who Rules? I

Transcription:

VOTING SYSTEMS AND ARROW S THEOREM AKHIL MATHEW Abstract. The following is a brief discussion of Arrow s theorem in economics. I wrote it for an economics class in high school. 1. Background Arrow s theorem is a central result in modern economics and social science, which states that any voting system satisfying reasonable assumptions has inherent limitations, and in particular that the problem of spoilers cannot be resolved within this framework. First, recall that voting is used to make decisions in democratic societies, but that many decisions can be made through the market system. The decision about how much corn will be produced in a given year is made not by central planning but by the cumulative choices of independent farmers and farming companies, each guided by market forces. However, many decisions must be made by the government: for instance, the provision of public goods such as military defense, or more simply the choice of a candidate. Some such decisions are between two alternatives (e.g. whether or not to support a given bill in a system of direct democracy), and there is a clear way to decide, namely, to make everyone vote and choose the side with the majority (choosing randomly if both options collect the same number of votes). In practice, however, one often has at least three alternatives, and it is quite possible no option will have a majority. Of course, one can select the winning alternative as the one that receives a plurality of votes, as is usually done. The problem with this approach is the existence of spoilers, as demonstrated for instance in the 2000 presidential election. Suppose there are three candidates A, B, C. A is a conservative, B a moderate liberal, and C a staunch liberal. The country, leaning left, is split: 49% for A, 48% for B, and 3% for C. The plurality approach will give A the victory, though the liberal 51% of the country would have preferred B to A. 1 In 2000, Ralph Nader was candidate C. Moreover, it is entirely possible that, according to pairwise match-ups, society will paradoxically prefer A > B, B > C, and C > A. In other words, even if each individual is rational i.e., each individual imposes a total ordering on the candidates society may be irrational. The Concordet criterion, named after the founder of voting theory, of choosing the candidate that defeats any other in a head-to-head match may not be applicable. Date: November 25, 2010. 1 In the American political system, the situation is complicated by the electoral college system. 1

2 AKHIL MATHEW There are various methods at ameliorating the situation. For instance, one could perform a run-off election between the top two candidates, though this incurs additional expense, and in fact need not fully resolve the spoiler problem what if the split were 34 32 33 between candidates A, B, C as above, and some of the moderately liberal B voters swung to A in the second (A versus C) round? An improvement to this model is instant-runoff voting (IRV), 2 which works as follows. Each voter is asked to rank the candidates from favorite to least favorite. Then, the first choices of all voters are tabulated; a candidate with a majority here wins. If there is no candidate with a majority, the candidate with the fewest number of first-choice votes is eliminated. Those voters who voted for the eliminated candidate now have their second-choice votes counted, and the candidate left in the round with the fewest votes is eliminated. The process repeats. In general, at each step, one scans through the list of all ballots and marks a vote for the highest-ranked candidate on each ballot that has not been eliminated. Then one eliminates the candidate with the fewest votes and resets all vote counts to zero. One repeats until a candidate has a majority. Nevertheless, Arrow s theorem shows that this method is also imperfect. Arrow s theorem itself is a purely mathematical statement, but it comes from the modelling of voting phenomena. Suppose we have a society, i.e. a finite set S (corresponding to the individuals of a population), and a finite set C of candidates. Each individual has a preference between candidates in a rational manner, i.e. if A, B, C C and an individual prefers A to B and B to C, then she prefers A to C. This means that each individual induces a total ordering on the set S by her preferences. A voting system associates to each system of preferences by each member of society a societal preference, or equivalently a total ordering on C. In other words, it is a function V : L(C) S L(C), where for a set T, we let L(T ) denote the set of total orders on it. We shall consider certain seemingly natural assumptions on V. (1) (Unanimity) Suppose A, B C. If all voters prefer A to B, then society prefers A to B. I.e., if A > B in each ordering in L(C) S, then A > B in V ( ). (2) (Independence of irrelevant alternatives) The societal preference of A relative to B depends only on the preferences (between A, B) of each individual in the society. In other words, if, L(C) S are societal preferences and A > B for an ordering in if and only if A > B in the corresponding -ordering, then A > B in V ( ) iff A > B in V ( ). The meaning of the first is clear. For the second, it means that whether society prefers A to B depends only on the individual preferences of A versus B (and not of any irrelevant alternatives C A, B). A simple way of constructing a voting system satisfying both conditions above is as follows. Pick d S and define V by sending (d). Equivalently, the 2 See [3].

VOTING SYSTEMS AND ARROW S THEOREM 3 societal ranking is simply that of d. The individual d for which this occurs is evidently unique, and is called a dictator. Theorem 1 (Arrow [5]). Any voting system satisfying unanimity and the independence of irrelevant alternatives has a dictator, when C has at least three elements. The theorem stunned mathematicians and economists, because it demonstrates that (within this framework), no perfect voting system can exist! Various proofs, all somewhat technical, are presented in [6]. 2. Proof of Arrow s theorem Henceforth, we assume V is a voting system satisfying unanimity and the independence of irrelevant alternatives. We present a proof due to Geanakopolous that a dictator exists. Step 1: An extremal lemma. Lemma. Suppose that each individual ranks A C either at the top or at the bottom. Then society ranks A either at the top or the bottom. Of course, this is an immediate consequence of unanimity when each individual chooses the same way (i.e. all top or bottom). For convenience, call a profile an element of L(C) S, i.e. a system of preferences. Suppose, to the contrary, that B > A > C in society, i.e. A is not in any extreme position. Since A is always at the extreme of each voter s list, we can tweak each voter s list so as to leave A fixed but shift the positions of B, C suitably such that C > B for each voter. In this modified profile P, clearly B > A, A > C societally because the relative preferences with respect to A have remained constant A is at the extreme and we have the independence of irrelevant alternatives. So B > C in V (P ). But also B < C for P by unanimity, contradiction. Step 2: Existence of a limited dictator. We now construct an element d S that will become the dictator. Lemma. Fix A C. There exists an individual d S and a profile P such that: (1) d ranks A at the bottom in P and V (P ) ranks A at the bottom. (2) Consider the modified profile P obtained by moving d s preference of A to the top. Then V (P ) ranks A at the top. (3) In the profile P, each voter ranks A either at the top of the bottom In other words, there is a profile P and an individual d such that by only d s changing its preference of A from the bottom to the top, society changes its preference of A from the bottom to the top. To see this, consider a profile P 0 where all individuals rank A at the bottom. Consider the profiles P 1,..., P s (where s = card S) where to obtain P s, we consider the profile P s 1 and, for one new voter, switch the preference of A from the

4 AKHIL MATHEW bottom to the top. Then in P 0, A is at the bottom of all voters preferences; in P s, A is at the top of all voters preferences. Since A is always at an extreme position in any voter in any profile P i, A is at either the top or the bottom of each V (P i ). When i = 0 it is at the bottom and when i = s at the top, by unanimity. There must be some P j such that A is at the bottom of V (P j ) and at the top of V (P j+1 ). Since P j+1 is obtained from P j by shifting the preference of A from the top to the bottom at some voter (call it d), the lemma is now clear. Step 3: Denoument. I claim that the individual d S from the previous lemma is a dictator. Step 3a. First, we show that: Lemma. If B, C C are distinct from A, then society (in any profile) ranks B > C iff d does. We can express this by saying that d is a dictator with respect to B, C. Consider the profiles P, P in the previous lemma; recall that each voter ranked A at the top or the bottom. Consider another profile Q in which, say, d ranks B > C. We will show that V (Q) ranks B > C as well. Now, modify P in the following way to get a new profile R. At the voter d, B is at the top, A right below, and C further down. At other voters, A remains at the extreme position (either top or bottom), and B, C are ordered in the same way as they are in Q. Note then that a voter ranks B > C in R iff she does so in Q. In particular, B > C in V (R) iff B > C in V (Q), by the independence of irrelevant alternatives. I now claim that B > C in V (R). Indeed, I will show that B > A and A > C. First, R and P have the same relative B, A preferences (e.g. at d, B > A), and A is at the bottom in V (P ). So B > A in V (P ) and hence in V (R). Second, R and P have the same relative A, C preferences (e.g. at d, A > C), and in V (P ), A is at the top. So by necessity B > A and A > C in V (R), implying B > C in V (R). Since V (R) and V (Q) have the same relative B, C preference, we are done. Step 3b. Now, I claim that if B C, then society ranks A > B if and only if d does. This handles the other case, and completes the proof that d is a (full) dictator. First, there is an individual d S such that society (for any profile) ranks A > B if and only if d does; this can be seen by choosing C A, B (recall that C has at least three elements!) and using the construction of the previous lemma, interchanging C and A. So we get an individual d S which is a dictator respect to any pair of elements not containing C. However, in the profiles P, P constructed for A, the societal preference of A, B shifts, even though only at d is there a difference between P, P. It follows that d = d, proving the result. Arrow s theorem is proved.

VOTING SYSTEMS AND ARROW S THEOREM 5 3. Approval Voting and Near-counterexamples It turns out, however, that there do exist instances of what one might colloquially call voting systems that do satisfy the conditions of unanimity, independence of irrelevant alternatives, and non-dictatorship. Consider the following procedure, called approval voting. Each citizen is given a ballot with a list of all the candidates and marks 1 or 0 for each one according as she approves or disapproves of the candidate. The candidate with the largest number of 1 s wins. It is clear that this method of voting, in theory, satisfies the relevant conditions. It does not contradict Arrow s theorem because each individual does not choose a total ordering on the candidates. 3 Approval voting is used in certain organizations such as the National Academy of Sciences and the Mathematical Association of America, but it lacks real-world testing. Moreover, a potential flaw in the model is that it may fail to elect a candidate who is the clear favorite of a majority of voters due to a new version of the spoiler problem. For instance, suppose there are three candidates A, B, C, and 51% of voters have the preference A > B but approve of both A and B. Suppose 49% of voters have the preference B > A but approve of only B. Then, B will win the election via approval voting. This is pointed out, for instance, in [1]. However, the problem diminishes in importance when {0, 1} is replaced with a larger set, allowing more expressivity; sometimes this variant of approval voting is called range voting. Range voting, unlike strict approval voting, allows voters to register a preference. Finally, another potential benefit of range voting is the boost given to third parties. Under the present system, it is unlikely that someone will cast a vote for a third-party candidate, but a range-wote allows her to express tepid support for a potentially too extreme but not out-of-the-question candidate. As a result, range-voting might increase the activity and strength of minor parties; given the disenchantment of many Americans with both the Republicans and the Democrats, this may be a serious consideration. References [1] Approval voting vs. instant runoff voting. http://archive.fairvote.org/irv/approval. htm. [2] Citizens for approval voting. http://www.approvalvoting.org. [3] Instant runoff voting. http://instantrunoff.com/. [4] Rangevoting.org Center for range voting. http://rangevoting.org. [5] Kenneth J. Arrow. A difficulty in the concept of social welfare. Journal of Political Economy, 58(4):326 346, 1950. [6] John Geanakoplos. Three brief proofs of Arrow s impossibility theorem. Economic Theory, 26:211 215, 2005. Available at http://ideas.repec.org/p/cwl/cwldpp/1123r3.html. [7] Dana Mackenzie. Making sense out of consensus. 2000. http://www.siam.org/news/news. php?id=674. [8] Ben Webster. Why Arrow s theorem is a scam, 2008. Blog post available at sbseminar. wordpress.com. 3 See the discussion at [8].