Computational Inelasticity FHLN05. Assignment A non-linear elasto-plastic problem

Similar documents
ÓÖ Ö ÛÓÖ Ò Ô Ö Ó ØÝ Ò Ø ÛÓÖ ÓÖ Ö Ø ÔÖÓÔ Ö ÔÖ Ü ÕÙ Ð ØÓ Ù Üº ÓÖ Ü ÑÔÐ ÓÖ Ö º Á ÛÓÖ ÒÓØ ÓÖ Ö Û Ý Ø ÙÒ ÓÖ Ö ÓÖ ÓÖ Ö¹ Ö º ÓÖ Ü ÑÔÐ ½¼ Ò = ½¼¼ ¼ Ö ÙÒ ÓÖ Ö

x = x 1x 2 x (p-1)x x = 3 x = 3 x = 3 x = 3 0 x 1 x 2 x... (p-1)x

Ì ÓÑÔÐ Ü ØÝ Ó Á ÓÑÓÖÔ Ñ ÁÒ ÐÐ Ú ÓÑÓÖÔ Ñ Σ ½ ½ ÑÓÖ ÔÖ ÐÝ A B Ö ÓÑÓÖÔ : ( ØÖÙØÙÖ ¹ÔÖ ÖÚ Ò Ø ÓÒ) ÓÙÒØ Ð ØÖÙØÙÖ Ò Ó Ý Ö Ð Ø Ò ÓÑÓÖÔ Ñ ÓÑ Σ ½ ½ Ö Ð Ø ÓÒ ÓÒ

ÓÖ Ø ÁÒØ Ð ÔÖÓ ÓÖ Ñ Ðݺ Ê Ö Û ÒØ Ò Ò Ö Ð ÖÓÙÒ Ò Ñ Ð Ö ÔÖÓ Ö Ñ¹ Ñ Ò ÓÙÐ ÓÒ ÙÐØ ÔÔÖÓÔÖ Ø Ø ÜØ ÓÓ Ò ÓÒ ÙÒØ ÓÒ Û Ø Ø ÔÖÓ ÓÖ Ö Ö Ò Ñ Ò¹ Ù Ð ÔÙ Ð Ý ÁÒØ Ð Ò

ÁÒØÖÓ ÙØ ÓÒ Ö ÙÑÙÐ ÒØ Ò Ã ÖÓÚ³ ÔÓÐÝÒÓÑ Ð Ä Ø Ù ÒÓØ Ý Ë Ò Ø ÝÑÑ ØÖ ÖÓÙÔ Ó ÓÖ Ö Òº ÁÖÖ Ù Ð Ö ÔÖ ÒØ Ø ÓÒ Ô ÖØ Ø ÓÒ λ Òº ÆÓÖÑ Ð Þ Ö Ø Ö Ú ÐÙ χ λ (µ) ÓÖ µ

Degradation

Regression. Linear least squares. Support vector regression. increasing the dimensionality fitting polynomials to data over fitting regularization

Question A n um b er divided b y giv es the remainder. What is the remainder 5 if this n um b er is divided b y? answer 3

Tensor. Field. Vector 2D Length. SI BG cgs. Tensor. Units. Template. DOFs u v. Distribution Functions. Domain

Ë Ø Ó ÒÙÑ Ö Ò Ø Ö Ö ÔÖ ÒØ Ø ÓÒ ÁÒ Ø ÓÙÖ Û Û ÐÐ ÒØ Ö Ø Ò Ø Ó ÒÙÑ Ö º ÁÒ ÓÑÔÙØ Ö Ò Û Ö ÓÒ ÖÒ Ý Ø ÕÙ Ø ÓÒ ÓÛ Ó Û Ú Ù Ø Ø ÓÙÖ ÔÓ Ð Ì Û Ý ÒÙÑ Ö Ø ÓÒ Ý Ø Ñ

ÇÙØÐ Ò ÇÙØÐ Ò ÈÙÖÔÓ Ó Ø ÈÖÓ Ø È ÖØ Ð ÌÖ Ò ÔÓÖØ È ÖØ Ð ÁÒØ Ö Ø ÓÒ È ÖØ Ð ÔÓ Ø ÓÒ Ê ÙÐØ ËÙÑÑ ÖÝ ¾ Ôк¹Å Ø º Ò Ö ØÞ Ë Ð ¹ Ò Ì Ö È ÖØÝ ËÓ Ð Ò Ó ÅÓØÓÖ Î Ð

ÌÖ ÓÒÓÑ ØÖÝ ÌÖ ÓÒÓÑ ØÖÝ Ð Û Ø Ö Ð Ø ÓÒ Ô ØÛ Ò Ò Ò Ð Ó ØÖ Ò Ð º ÁØ Û ÔÔÐ Ø ÓÒ Ò Ô Ý Ò Ò Ò Ö Ò º Ì ØÖ ÓÒÓÑ ØÖ ÙÒØ ÓÒ Ö Ö Ø Ò Ù Ò Ö Ø¹ Ò Ð ØÖ Ò Ð º C Ì Ç

Chapter 9. Trapezoidal Maps. 9.1 The Trapezoidal Map

ν = fraction of red marbles

ÐÓ Û µ ÅÄ Ó Ò ººº Ð Ò Ö Ó Ü = (,..., Ü Ò ) ººº ÒØ Ó ÛÓÖ Ý = (Ý ½,..., Ý Ò ) ººº Ö Ú ÛÓÖ ¹ ÓÒ Ø ÒØ ÐÓ Û µ Å Ü ÑÙÑ Ä Ð ÓÓ Åĵ Ó Ö Ø Ø ÔÓ Ð Ó Ö Ñ Ò Ñ Þ Ø

Accounts(Anum, CId, BranchId, Balance) update Accounts set Balance = Balance * 1.05 where BranchId = 12345

ÁÒ ÙØ Ú ¹ ÙØ Ú ËÝ Ø Ñ Ñ Ø Ñ Ø Ð ÐÓ Ò Ø Ø Ø Ð Ð ÖÒ Ò Ô Ö Ô Ø Ú Æ ÓÐ ÓØ Å Ð Ë Ø ÇÐ Ú Ö Ì ÝØ Ù ÍÒ Ú Ö Ø È Ö ¹ËÙ ÆÊË ÁÆÊÁ ÈÖÓ ¾¼¼

Æ ÛØÓÒ³ Å Ø Ó ÐÓ Ì ÓÖÝ Ò ËÓÑ Ø Ò ÓÙ ÈÖÓ ÐÝ Ò³Ø ÃÒÓÛ ÓÙØ Ú º ÓÜ Ñ Ö Ø ÓÐÐ


ÓÒÒ Ø ÓÒ ØÓ Ñ ÞÓÒ Ú Ø Æ Ø Ô ÓÖ ÖÓÑ Û ÖÓÛ Öº ÌÓ Ú Û ËÌÄ Ð ÓÒ ÑÝ Ä ÒÙÜ Ñ Ò Á Ù Æ Ø Ò Å Ò Ö¹ ØÓÖº ÌÓ ÔÖÓ Ù Ø ÇÔ ÒË Ö ÔØ Á Ù ÇÔ ÒË Û Ø Ø³ ÒØ Ö Ø Ø ÜØ ØÓÖ

ÁÒØÖÓ ÙØ ÓÒ Ì Ñ Ñ Ö Ó Ú Ò Ô ÓÖ Ù Ô µ Ú Ø Ñ Ò Ö Ð ØÙÖ ÓÒ Ø Ö Ó Ø Ô ØØ ÖÒº ÀÓÛ Ú Ö Ò Ú Ù Ð Ò Ñ Ð Ø ÓÛÒ Ø ÒØ Ñ Ö Ò º Ì Ô ØØ ÖÒ Ö ÒÓØ Ø ÖÑ Ò Ò Ø ÐÐݺ Ì Ý

Accounts(Anum, CId, BranchId, Balance) update Accounts set Balance = Balance * 1.05 where BranchId = 12345

1 The Multinomial logit

Abstract Submitted for the DFD11 Meeting of The American Physical Society

ÅÓØ Ú Ø ÓÒ Ñ ØÙ Ý ÜØ Ò ÓÒ Ó Û Ðй ÒÓÛÒ ÈÌ Ñ Ý Ø Ñ Ä ÈÄ Ò ØÓ ÒÖ ÒØ Ò ÓÒ Ð ÜÔÖ Ú Ò Ý Ö Ð Ü Ò Ð Ò Ö ØÝ Ý ÓÑ Ò Ò Ö ÒØ Ö ÙÖ ÓÒ Ñ ÒØÓ ÓÒ Ý Ø Ñ Ý ÝÒØ Ø Ð Ñ Ø

Ä ÖÒ Ò ÖÓÑ Ø Ö Ëº Ù¹ÅÓ Ø Ð ÓÖÒ ÁÒ Ø ØÙØ Ó Ì ÒÓÐÓ Ý Ä ØÙÖ ½ Ì Ä ÖÒ Ò ÈÖÓ Ð Ñ ËÔÓÒ ÓÖ Ý ÐØ ³ ÈÖÓÚÓ Ø Ç ² Ë Ú ÓÒ Ò ÁËÌ ÌÙ Ý ÔÖ Ð ¾¼½¾

É ÀÓÛ Ó Ý Ò ² Ö Ò ÁÒ Ö Ò «Ö ÓØ ÑÔ Ù ÔÖÓ Ð ØÝ ØÓ Ö ÙÒ ÖØ ÒØÝ ÙØ Ø Ý ÓÒ Ø ÓÒ ÓÒ «Ö ÒØ Ø Ò º Ü ÑÔÐ ÁÑ Ò Ð Ò Ð ØÖ Ð Û Ø Ò ½ Ñ Ø Ô Ö Ó Ù Ø º ÁÒ Ô Ö ÓÒ Ù Ø

Å Ø Ó ØÓ Ú ÐÙ Ø ÝÒÑ Ò ÒØ Ö Ð Ò ÐÝØ Ð ÒÙÑ Ö Ð Ñ Ò ÐÝØ Ð

ËÓÙÖ Ö Ø Ò Ö³ Ó Ø ÓÒ Ò ÐÓÓÑ Ö

Ö Ô ÓÒ Ø Ó ØÛÓ Ø Î Ò ÒÓØ Ý Î µº Ë Ø Î Ò Ø ÒÓÒ¹ ÑÔØÝ Ø Ó Ú ÖØ ÓÖ ÒÓ µ Ò Ø Ó Ô Ö Ó Ú ÖØ ÐÐ º Ï Ù Î µ Ò µ ØÓ Ö ÔÖ ÒØ Ø Ø Ó Ú ÖØ Ò Ò Ö Ô Ö Ô Ø Ú Ðݺ ÅÓÖ Ò

½ ÕÙ Ø ÓÒ ¾ ÔÔÖÓÜ Ñ Ø ÓÒ Ó ËØÖÓÒ ÓÒÚ Ö Ò Ó Ù Æ ØÓ Ù ËØÖÓÒ ÓÒÚ Ö Ò Ó Æ ØÓ ËØÖÓÒ ÓÒÚ Ö Ò Ó Ù Æ ØÓ Ù Ï ÓÒÚ Ö Ò Ó Ù Æ ØÓ Ù Ê ÙÐØ Ë Ø Ó Ø ÔÖÓÓ Ü ÑÔÐ Ì ½ ÜÔ

The Enigma machine. 1 Expert teams 25 mins. 2 Mixing the teams 30 mins. 3 Coding and decoding messages 1 period

ÙÖ Ë½ Ø Ò ØÖ ÙØ ÓÒ Ò Ø ÓÒØ Ø ÓÖ Ø Ò Ø Ö Ù º ¾


ÇÙØÐ Ò

ÈÐ Ò ÁÒØÖÓ ÙØ ÓÒ ½ ÁÒØÖÓ ÙØ ÓÒ Ö ÙÑÙÐ ÒØ Ò Ã ÖÓÚ³ ÔÓÐÝÒÓÑ Ð ÓÑ Ò ØÓÖ Ð ÓÖÑÙÐ ÓÖ Ö Ø Ö

Ú Ò Ø ÐÝ ÒÖ Ò ÓÚ Ö Ø Ô Ø Ú Ö Ð Ý Ö Ò Ø Ï Ø Ö Ð Ø Ø Ø Ò º ÐØ ÓÙ Ø Ò ÐÝ ÓÛ Ø Ø Ø Ú Ö Ø ÓÒ Ò Ø Ô Ö ÔÓÒ ØÓ Ø Ô ÖØ Ð ÖÓÙÒ Ò ÙÒ ÓÖÑ ÓÒØ ÒÙ Ï Ó ÖÚ Ø ÓÒ Ö Ö ¹

ÇÚ ÖÚ Û ½ ÁÒØÖÓ ÙØ ÓÒ ¾ Ý ¾¼½¾ Ò Ö Ð Þ Ö ÐØÝ ÅÓ Ð ÓÖ ÓÑ Ø Ý ¾

ÇÙØÐ Ò È Ý Ð ÓÒ Ø ÓÒ Ò ÓÙ Æ ÙÐ ÄÓÛ¹ Ò ØÝ Ð Ñ Ø À ¹ Ò ØÝ Ð Ñ Ø Ü ÑÔÐ ÜØ ÒØ ÓÒ ØÓÛ Ö ÐÑ Ö Ö Ñ ÒØ Ò

È Ö Ø ² ÑÔ Ö Ø Ò ÓÖÑ Ø ÓÒ ÓÖ Ñ È Ö Ø Ò ÓÖÑ Ø ÓÒ ÈÐ Ý Ö ÒÓÛ ÓÙØ Ø ÔÖ Ú ÓÙ ÑÓÚ Ó ÓÔÔÓÒ ÒØ º º º Ð ¹ËØ Û ÖØ Ñ º ÁÑÔ Ö Ø Ò ÓÖÑ Ø ÓÒ ÈÐ Ý Ö Ó ÒÓØ ÒÓÛ ÓÙØ Û

(p 0 ) p i = q f(p 0 ) p i

ÁÒØÖÓ ÙØ ÓÒ Ö ÔØ Ú ËØ Ø Ø ÁÒ Ö ÒØ Ð ËØ Ø Ø ÀÝÔÓØ Ø Ø Ò ¹ Ô Ú ÐÙ Ø ÖÑ Ò Ø ÓÒ Ó ÑÔÐ Þ ËÙÑÑ ÖÝ Ä ÖÒ Ò Ó¹ Ø ÖÑ Æ ÙÝ Ò Ì ÌÙ Î Ò ½ Æ ÙÝ Ò ÉÙ Ò Î Ò ¾ ½ ÍÒ Ú

λ = λ = 1.0 w Ø w = C (w) + λ N wì w

ÇÙØÐ Ò ÖÓÙÒ Ü ÑÔÐ ÔÖÓ Ö Ñ ÒÓ Ñ Ø Ó Ü ÑÔÐ ÒÓ Ì ÓÖÝ ÓÒÐÙ ÓÒ ¾

ÇÙØÐ Ò ½º Ê Ú Û Ó ËÔ Ò¹ Ü Ò ÇÔØ Ð ÈÙÑÔ Ò ¾º Ê Ú Û Ó Ô Ø ÜÔ Ö Ñ ÒØ º Ì Æ Û Ö Ø ÓÒ Ô ÖØ ÓÑ Ò Ö ² ÀÓÑÓ Ò Þ Ö ÀÝ Ö Ð Ð Ë ÇÈ ÒÓ Ø ØÓÓÐ ÂÙÒ ¾¼¼ º Ë Ò È ¾

ÙÖ ¾ Ë Ð Ø ÔÔÐ Ø ÓÒ ¾ ¾

ËÙ Ø ÙÒØ ÓÒ Ð ØÝ Ò Å Ø Ó Ü ÑÔÐ È Ö Ö Ö Ú Ø ÓÒ Ó È Ö Ö ÓÒ Ø ÄÊ( ) Ö ÑÑ Ö ÄÊ(½) È Ö Ö Ò Ö Ø ÓÒ ÓÒ

ÓÖØÖ Ò ÓÖØÖ Ò = ÜØ Ò ÓÒ ØÓ Ø ÆËÁ ÇÊÌÊ Æ Ø Ò Ö º Ê ÔÓÒ Ð ØÝ Ñ Ö Ò Æ Ø ÓÒ Ð ËØ Ò Ö ÁÒ Ø ØÙØ ÆËÁ  µ ÁÒØ ÖÒ Ø ÓÒ Ð ÇÖ Ò Þ Ø ÓÒ ÓÖ ËØ Ò Ö Þ Ø ÓÒ ÁËÇ»Á ÂÌ

r(t) s(t) w ( t ) v ( t ) OPTICAL FILTER H(f) PHOTODETECTOR ( ) 2 FIBER ELECTRIC FILTER Optical Link H(f) 0 / 1

ÌÙÖ ÙÐ Ò Ò Ô Ö ÓÖÑ Ò ÓÑÔÙØ Ò ÌÙÖ ÙÐ Ò ÓÑÑÓÒ Ô ÒÓÑ Ò Ò Ù Ñ Ò º ÈÖ Ø Ð ÑÔÓÖØ Ò Ò Ù ØÖ Ð ÔÖÓ Ò Ö Ý Ò ÖÓÒ ÙØ º Ê Ð Ø ØÓ Ò Ö Ý Ú Ò Ò Æ ÒÝ Ò ØÖ Ò ÔÓÖØ Ø ÓÒº

Ò Ø ÓÒ ÃÒÓØ ÃÒÓØ Ò Ê Ñ Ø Ö ÑÓÚ Ö ÒØ Ð Ñ Ò Ó Ë ½ ÒØÓ Ê Ö ÐÐ ÒÓØ º Ì ØÛÓ ÒÓØ Ã ½ Ò Ã ¾ Ö Ö Ö ØÓ Ø Ñ ÓÒ Ò ÑÓÚ ÒØÓ Ø ÓØ Ö º º Ø Ö Ö ÒØ Ð µ Ñ ÐÝ Ó ÒÓØ Ô Ö

PRINCETON PLASMA PHYSICS LABORATORY


Proof a n d Com p uta tion in Coq Maxime Dénès, Benjamin Grégoire, Chantal Keller, Pierre Yves Strub, Laurent Théry Map 16 p.1

edges added to S contracted edges

ÓÒØ ÒØ ¾

ÝØ Ð Ö Ø ÓÒ Ó ÝÒ Ñ ØÖ ÑÙÐ Ø ÓÒ Ó Ø Ú Ñ Ò Ð Ö Ø ÓÒ ÖÓÑ ØÖ ÓÙÒØ Ð Ð Ô Ö Ô Ø Ú Ø Ñ Ø ÓÒ Ó Ô Ø ÓÛ Ø ÛÓÖ Ø Ñ Ø ÓÒ Ó Ñ ÖÓ¹ ÑÙÐ Ø Ú ÓÖ ¾» ¾¾

Ë Ò ÓÖ Æ ØÛÓÖ Å ÈÖÓØÓÓÐ ÂÙ Î Ð ÓÒ Ò Ä ÓÖ ØÓÖÝ ÓÖ Ì ÓÖ Ø Ð ÓÑÔÙØ Ö Ë Ò À Ð Ò ÍÒ Ú Ö ØÝ Ó Ì ÒÓÐÓ Ý ¾ º º¾¼¼ ÂÙ Î Ð ÓÒ Ò Ë Ò ÓÖ Æ ØÛÓÖ Å ÈÖÓØÓÓÐ

Ñ Ò Ò Ð Û Ø ÓÑÔÐ Ü ¹ Ñ Ò ÓÒ Ð Ø º Ì Ñ Ò Ø Ø Ø Ø Ø ÓÑ Ò Ö ÒØ Ò Ó ØÖÙØÙÖ º ÓÖ Ü ÑÔÐ Ó Ø Ò Û ÒØ Ñ Ø Ó Ø Ø Ò Ð Ø Ò ÐÝ Ø ØÓ ÕÙ ÒØ ÐÐÝ ÜØÖ Ø ÑÔÐ ØÖÙØÙÖ ÇÒ Ø

Ì Ø Ð ÓÒ Ò Ò ÐÓ Ù Ó Ó Ñ³ Ø ÓÖ Ñ ÓÖ Ö Ø Ð ÑÞ Û ¹ ÐÐ ¾¼½½ ÇÒ Ø Ø Ó Ö Ð ÒÙÑ Ö Ö Ó Ò Þ Ý Ò Ø ÙØÓÑ Ø Ò ÑÙÐØ ÔÐ Ó ÐÓع ÖÙ Ø Ò¹ ÖÙÝ Ö ¾¼½¼ Ö Ø¹ÓÖ Ö ÐÓ Ò ÆÙÑ

ÇÙØÐ Ò ½ À ÙÒØ ÓÒ ¾ Ì ËÀ ¹ ÓÑÔ Ø Ø ÓÒ ÖÝÔØ Ò ÐÝ Ó À ÙÒØ ÓÒ ¾» ¾

Communications Network Design: lecture 16 p.1/41

¾º (F (G H)) ((F G) (F H)) º ( F G) (( F G) F) p,p q q

h = L(s) (x 1,y 1 ) (x 2,y 2 ) s = (x m,y m ) L(s) = h H w 1 w 2 w W

ÅÓØ Ú Ø ÓÒ Å ÕÙ Ð ØÝ Ó Ø Ó ØÖ Ò Ô Ö ÒØ ÁÒ Ø ÓÒ Ú ÐÓÔÑ ÒØ ØÖ Ò ÖÖ Û ÓÖ Ò Ð ÙØ ÓÖ Ö Ñ Ò ÐÓÒ Ú ÐÓÔÑ ÒØ ØÓÖÝ Å ÒÝ Ù ØÓÑ Ö»Ù ØÓÑ Ö Ù ÓÑÔÓÒ ÒØ Ó Ñ ÒÝ ÔÖÓ Ø

ÁÒØÖÓ ÙØ ÓÒ Î Ø Ð Ø Ö ØÙÖ ÓÒ ÑÔ Ø Ó Ù ØÑ ÒØ Ò Ø Ð Ø ÓÒ ÔÓÐ ÓÒ ÔÓÚ ÖØÝ ÙØ Ù Ø Û ÓÒ Ø ÑÔ Ø Ó Ô Ñ ÖÓ ÓÒÓÑ ÔÓÐ º ØØ Ö ÒÓÛÐ ÓÙØ ÔÖÓ¹ÔÓÓÖ Ñ ÖÓ ÔÓÐ Ò Ø Ñ ÒØ

½º¾ Ò Ø ÓÒ Ì Ò Ó Ø ÓÚ ÕÙ Ø ÓÒ Ò ÓÖÑ Ð Þ Ý Ø ÓÐÐÓÛ Ò Ò Ø ÓÒº Ò Ø ÓÒ ½ È Ù Ó Ê Ò ÓÑ ÙÒØ ÓÒ Ñ Ðݵ Ñ ÐÝ ¾ ¼ ½ ¾Æ ÐÐ Ñ ÐÝ Ó Ð µ Ä µµ È Ù Ó Ê Ò ÓÑ ÙÒØ ÓÒ ¾

Fibonacci Overview. 1 Motivation. 2 Preliminary Ideas. 2.1 Common Definitions. 2.2 Fibonacci Numbers Defined

ÇÆÌ ÆÌ ËÙ Ø Ú ÒØÖÓ ÙØÓÖÝ Ö Ñ Ö Å Ø Ô ÓÖ Ò Ø Ú ÔÔÖÓ Ì Ô ÐÓ ÓÔ Ð Ö Ò À ÖÑ Ò ÙØ Ò Ø Ö Ð Ø ÓÒ Ô ØÓ Ò Ì ÒØ ÖÔÖ Ø Ò Ò Ø ÒØ ÖÔÖ Ø Ö Ò

Ø ÔÖ ÙÖ ØÝ Ö ÕÙ Ö Ñ ÒØ Ó ÙØ ÒØ Ø Ý Ø Ð Ñ Òغ Ë Ú Ö Ð ÓÒÖ Ø ÙÖ ØÝ Ò Ô Ö ÓÖÑ Ò ØØÖ ÙØ Ú Ò ÒØ Ö Ð º Ì ÙÒ Ñ ÒØ Ð ÙÖ ØÝ Ó Ð Ó Ý Ø Ð Ñ ÒØ ÔÖÓØÓÓÐ Ö ØÓ ÑÔÐ Ø

ÓÙÖ ÓÒØ ÒØ Ï Ý Ó Û Ù Ø ÙÒØ ÓÒ Ð ØÝ ÔÖÓÚ Ý Ø Å Ò Ñ ÒØ ËÝ Ø Ñ Ø ÅÓ Ð Ê Ð Ø ÓÒ Ð Æ ØÛÓÖ ÇÇ ÀÓÛ Ó Û Ù ÅË Ê Ð Ø ÓÒ Ð ÑÓ Ð ÓÙÒ Ø ÓÒ Ð ÕÙ ÖÝ Ð Ò Ù ËÉÄ ÔÔÐ Ø

The distin tive features of interval temp o ral logi s ψ ψ T ruth of fo rmulae is de ned over intervals (not p oints). ψ ψ

Ð Ò ØÓ ØØ Ö Ò ÔÔÖÓÜ Ñ Ð ØÝ Ö ÙÐغ Ì ÓÙÖ Ô Ö Ñ ØÓÛ Ö Ø Ø Ö Ò ÔÔÖÓÜ Ñ Ð ØÝ Ö ÙÐØ Ò Ô Ö Ý Ø Ô Ô Ö Ó È Ô Ñ ØÖ ÓÙ Ò Î ÑÔ Ð ÓÒ ÌÖ Ú Ð Ò Ë Ð Ñ Ò ÔÖÓ Ð Ñ µ Ø

Ë ÑÙÐ Ø ÓÒ ÙÖ ØÝ Ò Ø ÔÔÐ Ô ÐÙÐÙ ËØ Ô Ò Ð ÙÒ ËØ Ú ÃÖ Ñ Ö ÇÐ Ú Ö È Ö Ö ÓÖÑ ÖÝÔØ ½»¼»¾¼¼

ÇÙØÐ Ò ½ ¾ ØÖ ÙØ ÓÒ ² Ì Ò ÐÝ Ó Ö ÕÙ Ò ÔÔÐ Ø ÓÒ Ó Ø χ ¾ ËØ Ø Ø ÐÙÐ Ø Ò Ô Ú ÐÙ Ò ³ Ü Ø Ø Ø Ì ÓÒÚ ÒØ ÓÒ Ð Ú º Ø Ñ Ô ÓÔغµ È Ö ÓÒ Ò ËÔ ÖÑ Ò ÓÖÖ Ð Ø ÓÒ Ù Ò

ÝÓÒ ÀÝÔ ÖØÖ Ï Ø ÓÑÔÓ Ø ÓÒ Å Ø Ó Ï Ø ÓÙØ ÓÑÔÓ Ø ÓÒ ÀÙ Ò Ò Î ØÓÖ ÐÑ Ù Ô ÖØ Ñ ÒØ Ì ÒÓÐÓ ÍÒ Ú Ö Ø Ø ÈÓÑÔ Ù Ö Ö ÐÓÒ ËÔ Ò Ù º Ò Ú ØÓÖº ÐÑ Ù ÙÔ º Ù ØÖ Øº Ì Ò

Ë ¼ Ë Ò Ð Ü Ñ Ò Ø ÓÒ ÈÊÁÄ ¾¼¼ ÉÙ Ø ÓÒ ½º Ë ÓÖØ Ò Û Ö Ñ Ö È ÖØ µ Ñ Ö ÖÐ Ì ÓÖ ÐÓÛ Ô Ò Ò ÓÒ Û Ø Ö Ø Ø Ø Ñ ÒØ ÌÖÙ ÓÖ Ð ½º Ì» Ú ÓÒ ÓÐ ÔÔÐ Ø ÓÒ Ò Ò ÓÓ ØÓ Û

R E S E A R C H R E P O R T I D I A P

Ì ÓÑÔÙØ Ð Ñ Ò ÓÒ Ó ÌÖ Ó ÁÒ Ò Ø À Ø ÊÙ ÐÐ Å ÐÐ Ö ÂÙÐÝ ¾ ¾¼¼ Ì Ö Ø ÓÙÖ Ø ÓÒ Ó Ø ÖØ Ð ÔÔ Ö ÔØ Ö Ó È º º Ø Ø Ø ÍÒ Ú Ö ØÝ Ó Ó ÙÒ Ö Ø ÙÔ ÖÚ ÓÒ Ó ÊÓ ÖØ Áº ËÓ

½º»¾¼ º»¾¼ ¾º»¾¼ º»¾¼ º»¾¼ º»¾¼ º»¾¼ º»¾¼» ¼» ¼ ÌÓØ Ð»½ ¼

ÁÐÐÙ ØÖ Ø ÓÒÚ Ö Ò Ó ÙÒ ÖØ ÒØÝ Ø Ñ Ø Ý ØÛÓ Ü ÑÔÐ ½º ÐÙÓÒ ØÖ ÙØ ÓÒ Ø Q.½ Î ¾º ÒÐÙ Ú Ø Ö Ø Ó dσ dp T ½. Ì Îµ/ dp dσ T ½. ¼ Ì Îµ Ì ØÛÓ Ü ÑÔÐ Ö ÐÓ ÐÝ ÓÒÒ Ø


t 2 3t + 2 lim xln x x x x2 + 1 x + 1

Ë Ñ ÒØ Ø ÓÒ Ð ÓÖ Ø Ñ ÓÖ Ø ÓÑÔ Ö ÓÒ Ó ÀÙÑ Ò Ä Ñ ÌÖ ØÓÖ Å Ö ÈÓÑÔÐÙÒ ½ Ò Å Âº Å Ø Ö ¾ ½ Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò ÓÖ ÍÒ Ú Ö ØÝ ¼¼ à РËØÖ Ø ÌÓÖÓÒØÓ ÇÒØ Ö Ó


Ï Ó ØÖ Ù ÛÓÖÐ Ý Ù Ð Ø Ö Ø ÓÖ Ð Ö Ð Ø Ú ØÓ Û ÆÈ ËÈ ÊË Ó ÓØ Ú ÓÑÔÐ Ø Ø º Å Ö ÌÓÖ ÅÌ Ú Ö Ð Ø Ú Þ Ð ÔÖÓÓ Ø Ø ÓÔØ Ñ Ð ÔÖÓÓ Ý Ø Ñ Ü Ø Ø ÆÈ ËÈ ÊË Ó Ú ÓÑÔÐ Ø

Ö Ò ÁÅ ÔØ Ö Ê ÕÙ Ö ÔØ Ö ½¼ ½ Ò ½ º ÄÏÀ ØÓ ÖØ Ð ÁÒØ ÐÐ Ò ÁÒØÖÓ ÙØ ÓÒ ¹ ËÔÖ Ò ¾¼½ Ë º ÓÙ ÖÝ Ë Ù¹Û ¹Ö µ ÖØ ¼¾µ ¾¹ º º ÓÙ ÖÝ ½ ÁÒ ØÖÙØÓÖ³ ÒÓØ ÖÙ ÖÝ ½ ¾¼½

ÈÖÓÚ Ò Ò ÁÑÔÐ Ø ÓÒ È É Ï Ö Ø ÐÓÓ Ø Û Ý ØÓ ÔÖÓÚ Ø Ø Ñ ÒØ Ó Ø ÓÖÑ Á È Ø Ò É ÓÖ È É Ì ÓÐÐÓÛ Ò ÔÖÓÓ ØÝÔ Ò Ð Ó Ù ØÓ ÔÖÓÚ Ø Ø Ñ ÒØ Ó Ø ÓÖÑ Ü È Üµ É Üµµ Ý ÔÔ

Ú Ð Ð ÓÒÐ Ò Ø ØØÔ»» Ѻ Ö Ùº º Ö ÁÒغ º ÁÒ Ù ØÖ Ð Å Ø Ñ Ø ÎÓк ÆÓº ¾¼½½µ ½ ½¹½ ½ Ê Ò Ò ÍÒ Ø Ò Ý Í Ò Ø ÎÓØ Ò ËÝ Ø Ñ Åº à ÒÑÓ ÑÑ Êº ÐÐ Ò µ Ô ÖØÑ ÒØ Ó Å

Ø Ñ Ò Ò ÙØÙÑÒ ¾¼¼¾ Ò Ò Ö ÕÙ ÒØ ÐÓ µ Ø Û Ø ØÖ ØÖÙØÙÖ ½ ȹØÖ È¹ ÖÓÛØ ÄÇË Ì È¹ØÖ Ø ØÖÙØÙÖ È¹ ÖÓÛØ Ð ÓÖ Ø Ñ ÓÖ Ò Ò ÐÐ Ö ÕÙ ÒØ Ø ÄÇË Ì Ð ÓÖ Ø Ñ ÓÖ Ò Ò Ö ÕÙ

ÖÖ Ý ÒÑ ÒØ Ø Ø Ñ ÒØ Ö Ö ÓÖ ÒÝ Ð Ø¹ Ò Ð Ñ ÒØ Ö ØÓÖ º ÖÖ Ý ÓÖ Ù Ø ÓÒ Ó ÖÖ Ý Ò Ô Ý Ù Ò ØÖ ÔÐ Ø Ù Ö ÔØ º ØÖ ÔÐ Ø Ô Ö Ò Ò Ø ÓÖÑ ÐÓÛ Ö ÓÙÒ ÙÔÔ Ö ÓÙÒ ØÖ º Á

½ ÁÒØÖÓ ÙØ ÓÒ ÒÓÑ ÈÓÖØ Ð Û ¹ ÒØ Ö Ø Ú ÓÑÔÙØ Ø ÓÒ Ð ÔÐ Ø ÓÖÑ ÓÖ Ø Ò Ð¹ Ý Ò Ñ Ò Ò Ó ÒÓÑ Ø º Ï Ñ ØÓ ÒØ Ö Ø Ø ÔÖ Ñ ÖÝ ÒÓÑ Ø ÙÒØ ÓÒ Ð ÒÓÛÐ Ò Ò ÐÝØ Ð ØÓÓÐ Û

ß ¾ ß ½º ÁÒØÖÓ ÙØ ÓÒ Ö Ñ ÒØ Ø ÓÒ ÙÖ Ò ÔÖÓØÓ Ø ÐÐ Ö ÓÐÐ Ô Û ÐÝ ÔØ ØÓ Ø ÔÖ Ñ ÖÝ Ñ ¹ Ò Ñ ÓÖ Ø ÓÖÑ Ø ÓÒ Ó Ò ÖÝ Ò ÑÙÐØ ÔÐ Ø Ö Ý Ø Ñ º º Ä Ö Ò Ö Ø Ðº ¾¼¼ Ò

Kevin Dowd, after his book High Performance Computing, O Reilly & Associates, Inc, 1991

(f g)(x) = f (g(x)) = g(x) 5 =

ÅÓ Ø Ü Ø Ò ÖÓ ¹ÓÚ Ö Ö ÓÙÖ ÔÖÓÚ ÓÒÐÝ ÐÐÓÛ Ö ÔÖ ÒØ Ø ÓÒ Ñ ÒØ ÇÚ ÖÚ Û ÛÓÖÐ ÔÔÐ Ø ÓÒ Ò Ö ÓÙÖ Û Ø Ö ÝÒØ Ø Ò ¹ Ê Ð Ö ÔÖ ÒØ Ø ÓÒ º Ñ ÒØ ÅÙ Ö Ö Ö ÔÖ ÒØ Ø ÓÒ Ö

Ì Ö Ö Ü ÑÔÐ Ó ÒØ Ô Ø ÓÒ Ð Ò Ù Ø Ø ÔÖÓÚ ÓÓ ÙÔ¹ ÔÓÖØ ÓÖ Ô Ý Ò ÒØ Ý Ø Ñ ÒÐÙ Ò Ø ÒØ Ö Ø ÓÒ ØÛ Ò ÒØ º ÒØ ¾ Ò ÒعÓÖ ÒØ ÜØ Ò ÓÒ ØÓ Ç Ø¹ Û ÒÐÙ ÓÒ ÔØ Ù ÖÓÐ ÒØ

ÄÇÊÁÇÍË Ä Ê Ê ÀÇÄ Æ ÏÁÄÄ ÇÍÊ ÒØ Ì Ö Ö Ñ ÒÝ «Ö ÒØ Ò Ø ÓÒ ÓÖ Ø Ø ÖÑ ÒØ Û Ø Ò Áº ÐÐÓÛ Ñ ØÓ ÒØÖÓ Ù ÎÁÄ ÊÇ Ç̺ ÅÍËÌ ÆËÄ Î ÊÌÀ Ë Ò ÆÎÁÊÇÆÅ ÆÌ Ø Û ÐÐ Ù Ø ÓÐÐ

Communications Network Design: lecture 07 p.1/44

Ò ÐÝ º Ê Ö ÓÒ ØÖ ÙØ ÓÒ Ó ÇÆ ½µ Ì ÓÙØÓÑ Ù Ð µ Ú Ö Ð Ö ÔÓÒ Ö ÔÓÒ µ Ú Ö Ð Ô Ò ÒØ Ò µ Ú Ö Ð Ú Ö Ð Y Ö Ð Ø ØÓ ÇÆ ÇÊ ÅÇÊ ÜÔÐ Ò ØÓÖÝ ÓÖ Ð Ö Ò µ Ú Ö Ð Ò Ô Ò Ò

Transcription:

Computational Inelasticity FHLN05 Assignment 2016 A non-linear elasto-plastic problem General instructions A written report should be submitted to the Division of Solid Mechanics no later than 1 November at 10.00, both a printed version and a digital version should be handed in. The digital version is sent via e-mail to marcus.alexandersson@solid.lth.se. The assignment serves as a part exam. A maximum of 5 points can be obtained. The task can be solved individually or in groups of two. If two students work together they will obtain the same amount of points. The report should be clear and well-structured and contain a description of the problem as well as the solution procedure including necessary derivations and the results from the calculations in form of illustrative figures and tables. The program code should be included as an appendix. It should be sufficient with 15 pages, appendix excluded. It can be assumed that the reader posses a basic knowledge in Solid Mechanics but it has been a while since he/she dealt with this type of analysis. After reading the report, the reader should be able to reproduce the results just by reading through the report, i.e. without using the included program. This implies that all derivations of necessary quantities such as stiffness tensor etc. should be presented in some detail. Note, a report should be handed in even if you re not able to solve all tasks or if your program doesn t work! 1

Problem description A thin steel plate should be examined as it undergoes elasto-plastic deformation. The geometry of the plate is shown in figure 1. Figure 1: Geometry of the thin steel plate, dimensions in meter. The structure have two symmetry axis; x = 100 mm and y = 0 mm, therefore only one quadrant of the profile is required for analysis. The small hole has a diameter of 3 mm and has its center at (30, 9.5) mm. The elliptic hole has its center at (65, 0) m and has the half-axis 20 mm along x and 10 mm along y. The half-circle has a radius of 10 mm and its center at (100,20) mm. The chamfering of the corner is 40 by 10 mm and the thickness of the profile is 1 mm. In the development process of the plate, two different steel qualities are considered. Both qualities have the same elastic properties but they have different response to plastic deformation. The elastic modulus is E = 200 GPa and the Poisson s ratio is ν = 0.3. In the elastic regime the material is considered linear and due to the small out of plane dimension plane stress is assumed, i.e, Hooke s law for plane stress can be used. For the plastic loading, the materials can be modelled using von Mises yield surface with isotropic hardening, where associated plasticity can be assumed. The yield stress for the materials are given by the following expressions Material 1 : σ y = σ y0 +K (1 e h K εp eff ) (1) Material 2 : σ y = σ y0 +ασ y0 (ε p eff )n (2) where the parameters σ y0 = 250 MPa, K = 200 MPa, h = 20 GPa, α = 15, n = 0.6. 2

Assignment The task is to calculate the elasto-plastic response of a given structure. The elasto-plastic response is the solution to the equation of motion (static conditions may be assumed and body forces may be neglected). To solve the problem the CALFEM-toolbox should be used. In CALFEM, certain general FE-routines are already established but you need to establish extra routines in order to solve the elastic-plastic boundary value problem. The routine TopConstMod_Assigmnent2016.m may be used to obtain the topology matrices and Dirichlet boundary conditions bc. Figure 2 shows the part to be meshed using PDEtool in MATLAB. 0.05 0.04 0.03 0.02 0.01 0 0.01 0.02 0.03 0 0.02 0.04 0.06 0.08 0.1 Figure 2: Geometry of the thin steel plate, dimensions in meter. For the global equilibrium loop a Newton-Raphson scheme should be implemented and for the integration of the elasto-plastic constitutive laws a fully implicit radial return method should be used (cf. chapter 18 in the course book, note that plane stress conditions prevail!). Three-node triangle elements are used for the finite element calculations. The calculations should carried out using the plane stress assumption, which is closer to the real physical loading situation than plane strain conditions. 3

The assignment includes the following Derive the FE formulation of the equation of motion. Derive the equilibrium iteration procedure by defining and linearizing a residual, i.e. Newton-Raphson procedure. Derive the numerical algorithmic tangent stiffness D ats and the radial return method for isotropic hardening of von Mises yield surface. Using a simple 2 element setup (illustrated in figure A.1 in appendix) plot the force-displacement curve for the different materials during a load-cycle where the material is plastically deformed (includes loading, unloading and re-loading). Investigate the elasto-plastic response of the steel profile by implementing a FE program using the Newton-Raphson algorithm with a fully implicit radial return method using displacement controled boundary conditions. This includes: Implementation of the subroutines update_variables1.m, update_variables2.m that checks for elasto-plastic response and updates accordingly (a manual for the routines is appended). The number indicate which hardening model that is considered. The routines can be checked with data from check_update.mat. Implementation of the subroutines alg_tan_stiff1.m, alg_tan_stiff2.m that calculates the algorithmic tangent stiffness (a manual for this routine is appended) of the corresponding material. The routines can be checked with data from check_dats.mat. Use displacement controlled loading and load the structure well into the plastic region and then return to the original position i.e, at boundary displacement zero. The following results should be presented in an illustrative way: A force-displacement curve for a load-cycle using the simple 2-element setup. The response for both materials should be presented. The development of plastic response regions (maximum load, unloaded, and with one or more intermediate steps) for both materials. The effective von Mises stress distribution at maximum load and after unloading, for both materials. 4

Remember that there are two different materials so the subroutines are slightly different because the materials have different hardening. The report should be well structured and contain sufficient details of the derivations with given assumptions and approximations for the reader to understand. Furthermore, some useful hints are given in appendix. Good luck! 5

Appendix A A.1 Variables Variable Description Size bc Dirichlet boundary conditions coord Coordinates of nodes [nbr_node 2] dof Degrees of freedom [nbr_node 2] edof Element topology matrix [nbr_elem 7] ex Element x-coordinates [nbr_elem 3] ey Element y-coordinates [nbr_elem 3] df External force increment vector [nbr_dof 1] dtau_x Incremental traction stress in x-dir du Incremental displacement in x-dir th Thickness control control=0 force controlled, control=1 displacement controlled 6

A.2 Hints 1) From f = f(σ (2),K (2) ) = 0 it is possible to derive a constraint that can be used to find the increment λ; 3 2 (σt ) T M T PMσ t σ 2 y = 0 (A.1) Note, the report should contain a derivation of this expression in order to get maximum number of points on the assignment. Note that σ y in the expression above should be calculated in current state and that M also depends on λ! 2) In order to simplify the integration of the variables, the von Mises yield condition can be written as (verify this!); f = 3 2 σt Pσ σ y = 0 where P is a matrix that maps the stresses σ to the deviatoric stresses s, i.e. s = Pσ. The matrix P is given by; P = 1 3 2 1 0 1 2 0 0 0 6 3) In order to solve the constraint for λ the command fzero in Matlab could be used. 4) You could use a modified Newton-Raphson scheme to solve the problem, i.e. use the elastic tangent stiffness instead of D ats. The convergence will then be impaired but it could be useful when developing your program. Note that for a maximum number of points on the assignment you will need to use the full Newton-Raphson. 7

Figure A.1: Simple two element structure with boundary conditions and loaded nodes prescribed (thickness 1 mm). Dimensions in mm.. 8

ÌÛÓ Ñ Ò ÓÒ Ð ÓÐ Ð Ñ ÒØ Ð Ø Ò Ø ÈÙÖÔÓ ÓÑÔÙØ Ø Ð ÓÖ Ø Ñ Ø Ò ÒØ Ø Ò Ñ ØÖ Ü ÓÖ ØÖ Ò ÙÐ Ö ÒÓ Ð Ñ ÒØ ÙÒ Ö ÔÐ Ò ØÖ ÓÒ Ø ÓÒ º a 6 (x 3, y 3 ) a 5 a 4 e y a 2 (x 2, y 2 ) a 3 e x (x 1, y 1 ) a 1 ËÝÒØ Ü Ø Ð Ø Ò Ø Ñ Ø Ö Ô Ð Ñ ÑÔµ Ö ÔØ ÓÒ Ð Ø Ò Ø ÔÖÓÚ Ø Ð ÓÖ Ø Ñ Ø Ò ÒØ Ø Ò Ñ ØÖ Ü ats ÓÖ ØÖ Ò ÙÐ Ö ÒÓ Ð Ñ Òغ Ì Ò¹ÔÐ Ò ØÖ Ö ÔÖÓÚ Ý Ñ Ñ = σ 11 σ 22 σ 12 Ø Ö Ø Ð Ò Ö Ð Ø Ñ Ø Ö Ð Ø Ò ÒØ ÓÖ ÔÐ Ò ØÖ º Ô Ø ¹ Ø Ú ÔÐ Ø ØÖ Ò ε p eff Ð Ñ Ø ÒÖ Ñ ÒØ λ Ò ÑÔ Ú ØÓÖ ÓÒØ Ò Ò Ø Ñ Ø Ö Ð Ô Ö Ñ Ø Ö Ò º Ì Ð ÓÖ Ø Ñ Ø Ò ÒØ Ø Ò Ò ÓÖ Ò ØÓ ÕÙ Ø ÓÒ ½ º µ Ò Ø ÓÙÖ ÓÓ Û Ö D ats = D a 1 ( ) T f f D a AaDa σ σ D a = ( ) 1 ( ) T D 1 + λ 2 f f, A a = D a f σ σ σ σ f K da D ÒÓØ Ø Ð Ò Ö Ð Ø Ñ Ø Ö Ð Ø Ò ÒØ Ú Ò Ý Ø Öº ½ Ä Å ÆÌ

ÙÔ Ø Ú Ö Ð ÌÛÓ Ñ Ò ÓÒ Ð ÓÐ Ð Ñ ÒØ ÈÙÖÔÓ ÓÖ Ð ØÓ¹ÔÐ Ø Ö ÔÓÒ Ò ØÖ Ò ÙÐ Ö ÒÓ Ð Ñ ÒØ ÙÒ Ö ÔÐ Ò ØÖ ÓÒ Ø ÓÒ Ò ÙÔ Ø Ú Ö Ð ÓÖ Ò Ðݺ a 6 (x 3, y 3 ) a 5 a 4 e y a 2 (x 2, y 2 ) a 3 e x (x 1, y 1 ) a 1 ËÝÒØ Ü Ñ Ô Ð Ñ ÙÔ Ø Ú Ö Ð Ñ Õ ÐØ Ô Ô Õ Ø Ö ÑÔµ Ö ÔØ ÓÒ ÙÔ Ø Ú Ö Ð ÔÖÓÚ Ø ÓÐÐÓÛ Ò ÙÔ Ø Ñ ¹ Ò¹ÔÐ Ò ØÖ σ T = [ σ 11 σ 22 σ 12 ] Ð Ñ ¹ ÒÖ Ñ ÒØ λ Ô ¹ Ø Ú ÔÐ Ø ØÖ Ò ε p eff Ù Ò Ø Ö Ð Ö ØÙÖÒ Ñ Ø Ó ÓÖ ÓØÖÓÔ ÚÓÒ Å Ö Ò Ò ÔÐ Ø Øݺ Ì Ú Ö Ð Ö ÓÑÔÙØ Û Ø ÐÔ Ó Ø ØÖ Ò Ø Ú ÔÐ Ø ØÖ Ò ÖÓÑ Ø Ð Ø ÕÙ Ð Ö ÙÑ Ø Ø Ñ Õ Ò Ô Õ Ö Ô Ø Ú ÐÝ Ò Ø ÒÖ Ñ ÒØ Ò ØÖ Ò ØÛ Ò Ø Ð Ø ÕÙ Ð Ö ÙÑ Ø Ø Ò Ø ÙÖÖ ÒØ ÐØ Ô º Ì ÒÖ Ñ ÒØ λ Ò ØÓ ÙÔ Ø Ø ØÖ Ò ØÖ Ò Ö Ð Ó ÓÑÔÙØ Ò ÓÙÐ Ù Ò ØÓÖ ÓÖ ÔÐ Ø ØÝ Ð Ø Ö ÓÒ Ò Ø ÔÖÓ Ö Ñ Ò Û ÐÐ Ø Ö ÓÖ Ð Ó Ù ÓÙØÔÙØ ÖÓÑ Ø ÙÒØ ÓÒº ÅÓÖ ÓÚ Ö Ø Ö ÒÓØ Ø Ð Ò Ö Ð Ø Ñ Ø Ö Ð Ø Ò ÒØ Ò ÑÔ Ú ØÓÖ ÓÒ¹ Ø Ò Ò Ø Ñ Ø Ö Ð Ô Ö Ñ Ø Ö º Ä Å ÆÌ ¾